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Harmonic oscillation damped by quadratic drag force is rarely found in physics textbooks. We

present typical characteristics of the phenomenon and an analytical tool for the experimental

determination of the resistance regime. The measurement is simulated using randomly generated

amplitudes with different types of statistical and systematic errors. Their impact on the process of

distinguishing between the linear and quadratic regimes and on the measured damping parameters

is studied. VC 2019 American Association of Physics Teachers.

https://doi.org/10.1119/1.5124978

I. INTRODUCTION

When teaching oscillation in physics class, we use the
basic laws of mechanics and the principle of energy conser-
vation and prepare connections with quantum mechanics.
The understanding of oscillations is the basis for solving
engineering problems, as has been shown in a great number
of published papers.

Most studies follow a standard pattern that includes a descrip-
tion of a specific experiment with a comparison of the measured
quantities and the theoretical model results.1–6 The most com-
mon topic is damped oscillation, with three varieties of energy
loss: oscillation with constant drag force (friction) and oscilla-
tion with linear or square-velocity-dependent drag force. In
most cases, the author(s) assumed that the appropriate form of
damping is known.7–11 Only a few studies differentiate the
effects of different regimes based on experimental results.12–14

For damping oscillation caused by the surrounding medium
(gas, liquid), one can use the calculation of the Reynolds num-
ber Re to theoretically differentiate between two regimes: for
Re < 1; we assume a linear law, for Re> 1000, a square law,
but for the intermediate values, determination of the dominant
regime is not unambiguous and depends on the particular
situation.15–18

In practice, the oscillation is often clearly in one of the
defined resistance regimes. In such cases, changing the regime
requires a change in the value of Re of at least 3 orders of mag-
nitude. Thus, in most real systems, by changing the initial ampli-
tudes of the oscillation and the proportional velocity amplitude,
the resistance regime does not change. A similar conclusion
applies to changing the velocity within a single swing.19

Nevertheless, calculating Re for a simple spring/mass sys-
tem on an air track is not sufficient to describe the regime: in
a common experiment with Re ffi 100, the decrease in ampli-
tude indicates a linear drag force.14,20 Therefore, it is useful
to have an analytical tool with which we can determine the
regime from real experiments and compare results with theo-
retical assumptions.

Thus, we are interested in the ability to determine the type
of velocity-dependent damping by measuring the time-series
of the amplitude. For this purpose, we simulated measured
amplitudes in both regimes with different types and sizes of
measurement errors. For experimental samples, we used ran-
dom sets, adjusted different theoretical functions, and com-
pared the measured parameters obtained with default values.

Although the concept of measurement (and measurement
results) usually refers to a real experiment, in this study, we
used it for a set of simulated values. The study described is
generalized and not related to any specific type of oscillation,
and so the findings can be used on a variety of realistic phys-
ical oscillating systems.

II. ANALYSIS AND RESULTS

A common experimental exercise in high-schools and uni-
versities determines the damping coefficient by measuring
the time dependence of the oscillation amplitude. In this
approach, a viscous drag force and an exponential decrease
in the amplitude x0ðtÞ

�
�

�
� ¼ x0 exp �Btð Þ with B as a damping

parameter are assumed.
No current textbooks include oscillation using the square

drag law Fdj j / v2.21–25 In this case, the equation of motion
€x þ d _x2 � Signð _xÞ þ x2

0x ¼ 0 cannot be analytically solved,
and we have to implement numerical procedures to find
approximate solutions. It turns out that the time dependence
of the amplitude is in good agreement with the function
x0ðtÞ
�
�

�
� ¼ x0=ð1þ DtÞ (Fig. 1), where D ¼ 4dx0x0=ð3pÞ is

the parameter of quadratic damping.8 It can be shown that
such an oscillation cannot be critically damped or over
damped and that the frequency is equal to the frequency of
the undamped oscillator.26 Unlike viscous damping, where
the decrease in amplitude is “at all times just like itself,” the
decrease depends on the initial distance and the frequency of
the oscillation.

Figure 2 shows the time dependence of the relative amplitude
x0ðtÞ
�
�

�
�=x0 for selected parameters for both regimes. Functions

Y1 ¼ e�a and Y2 ¼ 1= 1þ að Þ and a ¼ Bt or a ¼ Dt present
theoretical values. For default values B ¼ Btheo: ¼ 1 s�1 or
D ¼ Dtheo: ¼ 1 s�1, the values on the x-axis present the time in
seconds. In addition, we include random sets of measured values
for the same parameters.

The simulated values are generated at intervals Da ¼ 0:1
and are distributed around the theoretical values with a con-
stant absolute (statistical) error r ¼ 0:05.27,28 Here, r is a
measurement error, expressed relative to the initial ampli-
tude x0. Therefore, we assume that the initial amplitude is
measured precisely enough to ignore its error. For the linear
drag, additional sets of simulated values for statistical error
r ¼ 0:03 and r ¼ 0:10 are shown.
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We adapted both one-parameter model functions y1 ¼ e�Bt

and y2 ¼ 1= 1þ Dtð Þ to all simulated measurement sets by
gradually integrating additional points at the end of the mea-
surement range a into the fitting procedure. The measured
damping parameters B and D (obtained from fitting) were com-
pared with the default theoretical value Btheo: ¼ 1 s�1 or
Dtheo: ¼ 1 s�1 (used in the simulation).

When expanding the measuring range, two criteria were
used to determine the correct adjustment function and the
corresponding resistance regime:

(1) Variations of the measured damping coefficient value
(2) Difference in the quality of the fits

In the case of an appropriate fitting function (y1 or y2), the
value of the measured damping parameter B or D approaches
the default theoretical value 1 s�1 with increasing a. Otherwise,
the value is changed approximately linearly by increasing the
interval (Fig. 3). The convergence is reasonable, as one can bet-
ter detect the validity of the fitting function applied on a larger
interval. Interestingly, variation of the derived parameter is

almost independent of the statistical error value r. Therefore,
even for relatively large measuring errors, we can distinguish
both regimes by observing the convergence of the damping
parameters B and D. Nevertheless, the measured range must be
long enough that the amplitude decreases to at least �25% of
the initial value (a ¼ 1:4 for the linear law and a ¼ 3.0 for the
square law) (Table I).

The quality of the fit is estimated by the root-mean-square
error RMSE.27–29 With DðRMSEÞ, we indicate the difference
in the RMSE value obtained by fitting the same dataset with
two different fitting functions. When using the appropriate fit-
ting function, RMSE values converge roughly to the value r,
which is usually r � 0:01 for real experiments. Therefore, we
set the value DðRMSEÞ ¼ 0:01 as the resolution limit for the
difference in the quality of the fits. Minimum relative amplitude
for reliable determination of the regime according to the
D RMSEð Þ criterion depends slightly on the r value (Table I).
In general, the impact of random errors in the data simulation
on DðRMSEÞ becomes negligible when the amplitude of the
oscillation drops to �25% of the initial value. Here, D RMSEð Þ
> 0:01 and increases monotonically, which enables a reliable
determination of the regime (Figs. 4 and 5).

Fig. 1. Theoretical relative position xðtÞ=x0 of the damped harmonic oscilla-

tor in the case of square drag force (blue) and the adjustment function

y ¼ 61=ð1þ DtÞ (purple), which describes the time dependence of the rela-

tive amplitude, d ¼ 0:10 m�1, x0 ¼ 1:57 s�1, and D ¼ 0:0668 s�1:

Fig. 2. Theoretical relative amplitude for the linear drag law (red line) and

square drag law (blue line) together with randomly generated values (sym-

bols) at different statistical error rates. The areas for 6r ¼ 60:05 around

the theoretical functions are shaded with the corresponding colors.

Fig. 3. The values of the measured damping parameter B or D, depending on

the measuring range a for both simulated regimes with r ¼ 0:05. At a short

measuring range, the values fluctuate randomly. For models that adequately

describe the resistance regime (filled circles), the parameter values converge

to the default theoretical value 1 s�1, while in inadequate models (empty

circles), the values at a large measuring range change approximately line-

arly. The lower limits of the measuring range for a reliable determination of

the drag regime are set to a ¼ 1:4 for the linear drag law (red line) and a ¼
3:0 for the square drag law (blue line). When approaching this range, the

damping parameter for the appropriate fitting function varies more slowly

than that for the inappropriate function, which provides a reliable

distinction.

Table I. Approximate upper limit values of relative amplitude x0ðtÞ
�
�

�
�=x0 for

reliable determination of the regime according to both criteria for both resis-

tance regimes at different statistical errors r.

Criterion Resist. regime r ¼ 0:03 r ¼ 0:05 r ¼ 0:10

B and D convergence LIN. 0.27 0.25 0.22

QUAD. 0.26 0.25 0.24

DðRMSEÞ LIN. 0.50 0.22 0.15

QUAD. 0.35 0.27 0.23
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Fitting functions can be expanded by introducing addi-
tional parameters A or C: y1 ¼ Ae�Bt or y2 ¼ C=ð1þ DtÞ.
While using relative amplitudes, this extension is reasonable
only when the error of the initial amplitude x0 is not negligi-
ble. For our generated sets, additional flexibility of the fitting
functions improves the modelling error only slightly.
Furthermore, the ability to distinguish both model functions
remains the same and the calculated value of the parameter
B or D differs from the simulated value 1 s�1 even more. By
introducing additional parameters A and C for r ¼ 0:05 and
the largest measuring range, the value B changes from 1.004
to 0.966 and value D changes from 0.982 to 0.952 in the case
of appropriate fitting function, meaning that by introducing
A or C, the discrepancy increases from 0.4% to 3.4% and
from 1.8% to 4.8%.

When measuring the damped oscillation amplitude, the num-
ber of measurement points is limited by the ratio between the
degree of attenuation and the frequency and by the ability to
measure small amplitudes. At a sufficiently high oscillation fre-
quency, the change of the step in the simulation (the density of
simulated amplitudes) is equivalent to changing the drag rate in a
real experiment. Figure 5 shows the effect of the number of sim-
ulated measuring points on the difference in the quality of both
fits DðRMSEÞ. The simulated data correspond to the linear drag
at r ¼ 0:05. At a ¼ 3:0; for steps Da ¼ 0:05; 0:1; and 0:2, we
obtain 60, 30, and 15 measuring points, respectively. We can see
that the change in the number of measuring points inside the
same measuring range does not significantly affect the ability to
identify the appropriate fitting function. In all cases, we need a
measuring range a around 1.5 ð x0ðtÞ

�
�

�
�=x0 ¼ 0.22). The same

applies to the values B or D obtained by fitting. Therefore, the
ability to identify the correct regime is roughly independent of
the degree of damping; it depends only on the dynamic range of
data. The latter is also true for the square law.

At this point, we can summarize the findings on the exper-
imental determination of the resistance regime in the case of
random errors:

(1) Both of the analyzed criteria are robust and roughly inde-
pendent of the statistical error rates.

(2) For reliable determination, the measured relative ampli-
tude has to be �0.25.

(3) The use of relative amplitudes and one-parameter fitting
functions is recommended in the analysis. The introduc-
tion of an additional parameter does not affect the ability
to determine the regime, but it may increase the error of
the measured damping parameter.

(4) The ability to determine the resistance regime does not
depend on the degree of damping.

Furthermore, we include three types of systematic errors
in simulated measurement sets:

(1) Equilibrium position error—the measured equilibrium
position differs by constant value E from the true equi-
librium position, which gives the relative error d ¼ E=x0.

(2) Normalization error—the measured initial amplitude dif-
fers by constant value F from the true initial amplitude,
which gives the relative error d ¼ F=x0.

(3) Constant error—all measured amplitudes differ by con-
stant value G from the true amplitude values, which
gives the relative error d ¼ G=x0:

Figure 6 shows the influence of these systematic errors in
the case of an ideal example of viscous damping in the absence
of random errors. For demonstration purposes, the magnitudes
of systematic errors are larger than is usual in real experiments.
Additionally, they are selected in such a way as to increase the
probability of incorrect identification of the regime. For the
square law, we obtain similar characteristics.

Figures 7 and 8 present the impact of the constant error on
the parameter B or D and on the difference in the quality of
fits D RMSEð Þ by varying the range a, respectively. The sim-
ulated data correspond to linear drag at r ¼ 0:05 and the
one-parameter fitting functions are used. We notice that for
d > 0:1, only detailed analysis of the convergence of param-
eters B or D over the entire range a enables the determination
of the damping regime. The latter is no longer possible
according to the DðRMSEÞ criterion. The obtained value of
parameter B at d ¼ 0:10 and r ¼ 0:05 is �20% below the
true value. Similar findings are true for the square drag law.

Fig. 4. Simulated measurement set for the square drag law with r ¼ 0:05 and

both fitting functions at a ¼ 2:7 ð x0ðtÞ
�
�

�
�=x0 ¼ 0:27Þ. The appropriate fitting

function follows the measured points outside the included range; conse-

quently, with additional expansion of the fitting range, the measured damping

parameter changes only slightly (Fig. 3). In addition, the fit with the appropri-

ate function is better according to the visual criterion, since the function

follows the generated points in the entire fitting region equally well.

Fig. 5. Differences in fit quality DðRMSEÞ between appropriate and inappro-

priate fitting functions at different numbers of measuring points (simulated

amplitudes) within the same measuring range a for the linear drag law and

statistical error r ¼ 0:05. For reliable regime determination, a measuring

range a� 1.5 is needed for all three measurement simulation densities. From

here on, D RMSEð Þ > 0:01; and it increases almost monotonically.
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Table II shows the impact of systematic errors for
d � 0:1 on the ability to experimentally determine the resis-
tance regime for both criteria by using one-parameter fitting
functions. The measured values of the damping parameter B
or D are also shown for the appropriate fitting functions and
the large measuring range value a. All characteristics are
similar for both damping regimes. Slow convergence of the
measured damping coefficient B or D and the low DðRMSEÞ
value signal the need to extend both fitting functions with
additional parameters.

The normalization error can be detected and compensated
for by introducing the additional parameters A or C to fitting
functions y1 ¼ Ae�Bt or y2 ¼ C= 1þ Dtð Þ. For an appropriate
fitting function, the fit quality improves considerably, the

parameter A or C compensates for the normalization error,
and the damping parameter B or D remains in the proximity
of 1 s�1 (true value). For an inadequate fitting function, the
quality of the fit is not improved.

In the case of constant error, the use of absolute ampli-
tudes is more effective than the use of relative (normalized)
amplitudes. This enables us to detect and compensate for the
error directly by introducing a third parameter in the form of
an additive constant to the fitting function y1 ¼ Ae�Bt þ H or
y2 ¼ C= 1þ Dtð Þ þ I: Conversely, if all measured amplitudes
have the same relative error, the normalization process
removes this error.

III. CONCLUSIONS

In our analysis, we show that the ability to determine the
proper drag regime and the damping coefficient depends pri-
marily on the size of the dynamic range of measurements,
that is, on the ability to measure small amplitudes. In real
experiments, it is therefore preferable to choose a large ini-
tial amplitude. However, we must keep in mind that it is nec-
essary to remain within the linear-dependence range between
distance and acceleration, which is a condition for harmonic
oscillation.

We show that in the initial phase of an analysis, it is rec-
ommended to use relative amplitudes and two one-parameter
model functions. The criteria for determining the regime can

Fig. 6. The influence of systematic errors (connected symbols) on the theo-

retical relative amplitude for the linear drag law (red line). For normalization

and constant error, the amplitude curves are similar to the theoretical curve

for the square drag law (blue line), which makes it difficult to determine the

resistance regime. For comparison, the shaded area 6r ¼ 60:05 around the

linear drag curve is shown.

Fig. 7. The values of the damping parameter B (filled symbols) or D (empty

symbols) depending on the measuring range a for different values of con-

stant systematic error d. The generated measurement sets correspond to the

linear drag law at r ¼ 0:05. For d > 0:1; only detailed analysis of the varia-

tion of parameters B and D over the entire range a enables the determination

of the damping regime. Over the large measuring range, the measured damp-

ing parameter B (from appropriate models) differs greatly from the default

value Btheo: ¼ 1 s�1.

Fig. 8. Differences in fit quality DðRMSEÞ between appropriate and inappro-

priate fitting functions at different values of the constant systematic error d,

depending on the measuring range a. The generated measurement sets corre-

spond to the linear drag law at r ¼ 0:05. For d > 0:1; a combination of two

types of errors enables a determination of the resistance regime according to

the DðRMSEÞ criterion.

Table II. The impact of systematic errors for d � 0:1 on the ability to

experimentally determine the resistance regime for both criteria using one-

parameter fitting functions. The measured values of the damping parameter

B or D for the appropriate fitting functions and the large measuring range

value a are also given.

Error type

B and D conv.

criterion

DðRMSEÞ
criterion

B or D

value (s–1)

Equilibrium position error Work Work � 1þ 2dð Þ
Normalization error Limited Doesn’t work � 1þ dð Þ
Constant error Limited Doesn’t work � 1þ dð Þ
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be the difference in the quality of both fits or the observation
of varying the measured parameters by gradually integrating
additional points at the end of the measurement range. If the
determination of the regime is not reliable, we can improve
the reliability of the model and the measured damping
parameters by including additional parameters. In this way,
we can also investigate systematic errors.
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